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Abstract. In the fourth part of this work, the case of materials which exhibit hereditary-r 
memory--efTects is examined. By requiring that the general constitutive equations for a 
so-called ‘simple’ material obey different principles of formulation such as those of equi- 
presence, material indifference, and fading memory, and studying the restrictions placed 
upon the response functionals by the second principle of thermodynamics, a complete set of 
functional constitutive equations is derived. In particular, it is shown that the heat flux is a 
functional with respect to the temperature gradient. This result allows the formulation of a 
heat conduction law which provides a possible answer to the paradox of infinite propagation 
velocity of thermal disturbances in relativity. By examining the limiting case of steady-state 
processes, the present formulation is shown to incorporate, in a general frame, the results 
obtained for nonlinear elastic solids in the preceding papers of this series. 

1. Introduction 

This fourth and last paper of this series, devoted to  the special relativistic theory of 
magnetoelastic interactions, is concerned with so-called hereditary processes. Here 
hereditaryisunderstoodinthesensegranted byVolterra( 1959)inhistheoryoffunctionals : 
the behaviour of the material at a given event point of a particle trajectory in space-time 
depends explicitly on the previous situations experienced by this particle along its 
trajectory. One may equally speak of ‘memory’ effects. This, of course, is in agreement 
with the deterministic viewpoint adopted here. Furthermore, the explicit dependence 
on the past histories of the different arguments leads to  the notion of constitutive 
functionals. This is an approach made quite popular in classical continuum mechanics 
during the last decade, especially through the works of Coleman et  al (see references 
cited hereafter). The notion of functional used is more general than that used by Volterra 
and is rather similar to  that used in the mathematical works of Gbteaux, Frechet, 
Hadamard, . . . (cf Rall 1971). This paper offers a more mathematical content than the 
preceding ones because it is impossible to  deal seriously with functionals unless one 
specifies the topological frame in which the continuity and the differentiability of the 
functionals can be defined. There are only a few works in relativistic continuum physics 
that follow this type of approach (for instance, Curtis and Lianis 1971, Maugin 1972c, d, 
1973f) although the ‘functional approach’ contains : (i) a possible answer to the paradox 
presented by the propagation of thermal disturbances at infinite velocity if one assumes 
a direct relativistic generalization of Fourier’s heat conduction law (see Maugin 1974 ; 
also, the comments at the end of the third paper of this series : Maugin 1973b); (ii) the 
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representation of a wide class of dissipative effects (such as viscoelasticity). Also, it 
provides a very general frame for the study of constitutive equations of which simple 
cases, such as that of nonlinear elastic solids, can be deduced for a certain approximation 
ofthe functionals. In a recent paper, McCarthy (1974) has used this approach to  generalize 
our classical theory of micromagnetism (Maugin and Eringen 1972a, b, Maugin 1972b, 
1973e). The purpose of this paper is to  bring the present relativistic theory of magneto- 
elastic interactions to  a comparable level of generality. 

The Clausius-Duhem inequality obtained previously and which represents the local 
statement of the second principle of thermodynamics is recalled in $ 2. A decomposition 
of the relativistic stress tensor is given which allows, as in the classical theory (see 
Maugin 1973e), to put in evidence the different contributions to this stress tensor, 
specifically: (i) the pure ‘elastic’ stress tensor which would remain even if magnetic 
effects were discarded ; (ii) the effect of the interactions between matter and the magnetiza- 
tion field through the so-called local magnetic field; (iii) the effect of the interactions 
between neighbouring magnetic spins (exchange forces) that also contribute to the 
stresses. The last two effects would disappear in non-magnetized media. The decom- 
position so introduced makes easier the following study. The notion of relativistic 
‘simple’ magnetized thermodeformable media and the corresponding general constitutive 
equations are given in 6 3. The important point to be noted is that all constitutive 
equations are assumed to  depend functionally on the same set of independent variables 
(in agreement with the principle ofequipresence; cf Eringen 1967, chap 5) .  In particular, 
the dependent constitutive variables are functionals of the history of the temperature 
gradient. I t  is this assumption which offers a possible answer to  the heat propagation 
paradox referred to  above?. In contrast to the work of McCarthy (1974), the material 
is hereassumed to  beanelectricityconductor. Restrictedformsoftheresponsefunctionals 
are given that satisfy the principle of material frame indifference in relativity previously 
given by the author. The response functionals of the material are assumed to obey the 
principle of fbding memory whose formulation is due to Coleman (1964; also, Coleman 
and No11 1961, Coleman and Dill 1971). This means that the disturbances experienced 
by the material at distant event points do not have much influence on the behaviour of 
the material at the present event point. While this hypothesis appears to be physically 
reasonable, it settles a topological frame for the functionals, which is needed to  justify 
the analytical operations performed on the latter. Each admissible thermodynamical 
process is assumed to  obey the Clausius-Duhem inequality. The consequences of this 
requirement are explored in $4.  I t  is thus shown that all constitutive variables are 
derivable (in a certain functional sense) from the free energy functional which cannot 
depend explicitly on the present values of the temperature gradient and the electric field. 
In particular, this is true for the heat flux vector and the conduction current. This is a 
rather unusual fact which, however, is consistent with the ‘functional approach’. Using 
the notion of steady-state continuation introduced by Coleman et ai, we then show in $ 5 
that the case of nonlinear elastic media for which constitutive equations were obtained 
in part I 1  of this work (Maugin 1973a) can be obtained at the limit of the general case 
studied in $ 4. Section 6 is devoted to  comments that bring the present results in contact 
with those of other works. 

Finally, it is pointed out that here the hereditary (dissipative) processes are examined 
within the frame of phenomenological physics since we refer to the continuous structure 
of the matter. One may envisage other types of approach such as one relying on kinetic 
t Gurtin and Pipkin (1968) and McCarthy (1970a. b) have recently considered the same hypothesis in classical 
physics. 
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theory arguments. In particular, this can be done in order to provide a different solution 
to the heat propagation paradox as is clearly demonstrated by Stewart (1971 and 
subsequent works). However, the present 'macroscopic' treatment allows us to examine 
all dissipative processes (heat flow, viscoelastic behaviour, dissipative magnetic effects) 
with the same degree of generality in a sufficiently simple manner. A comparable result 
would require inextricable calculations in a kinetic theory approach. 

2. Prerequisites 

The notation is that of the three previous parts of this work (Maugin 1972a, 1973a, b, to 
be referred to as I, I1 and I11 respective1y)t. The basic local conservation laws of the 
special relativistic theory of magnetoelastic interactions have been given in these papers 
(also in Maugin 1973~1) and will not be repeated here. They consist of the continuity 
equation, the first Cauchy equations and the so-called energy equation obtained by 
taking the space-like and time-like projections of the conservation of energy-momentum 
equation, the second Cauchy equations which describe the time evolution of the 
magnetic spin, and the Maxwell equations in moving deformable matter subject to the 
Frenkel condition (the electric polarization four vector vanishes). The matter is supposed 
to be a heat and electricity conductor. Central to the subsequent development is the 
local expression of the second principle of thermodynamics referred to as the Clausius- 
Duhem inequality and written as (see equation (111-2.5)) 

The symbols introduced in these equations bear the following physical significance ; 
c : the light velocity in a vacuum ; p : the proper density of matter ; U" : the four velocity ; 
U" : the four acceleration ; e!, : the relativistic gradient of the velocity ; a,, : the relativistic 
rate of strain ; U,, : the vorticity tensor ; R,, : the precession velocity of the magnetic spin ; 
vas : the angular velocity of the magnetic spin with respect to the deformable matter; 
e : the magneto-internal energy per unit of proper mass ; 6 : the proper thermodynamical 
t,emperature ; q : the specific entropy ; $ : the magneto-free energy per unit of proper mass ; 
8, : the relativistic temperature gradient ; 4, : the heat flux four vector ; gY : the electric 
field four vector ; j y  : the conduction current four vector, tp' : the relativistic stress tensor ; 
t Equations of I ,  I1 and I11 are accordingly referred to with a prefix 1, I t ,  or 111. 

Of course, the same basic conservation laws apply whatever the mechanical behaviour (eg, solid, fluid) of 
the matter is. That is, the theory of magnetoelastic interactions and that of spinning 'ferrofluids' share the same 
field equations. 
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MOz-/: the relativistic couple stress tensor (MOay = - Maby) .  d,,, is the complicated 
kinematical quantity defined by equation (2.4). It generalizes in some way the notion of 
gradient of the precession velocity R,, . The latter is such that the proper time evolution 
of the magnetization four vector (per unit of proper mass) along the worldline 
( W p )  of a material particle ( X K )  equipped with J& is given by (see III)? 

All four vectors and tensors introduced above are, except for U*, so-called PU tensor 
fields (cf I). That is, even though they are expressed in full covariant formalism, they are 
essentially spatial. All Greek indices run from one to four while all Latin indices will 
take values 1,2 and 3 only. Semicolons denote covariant derivatives. A superposed dot 
indicates the invariant derivative (also referred to as the proper time derivative when it 
applies to tensor fields expressed as functions of the independent variables X K  and s ; 
the latter is the proper time along WX")  in the direction U', ie, d = u " d g ; , .  Parentheses 
and brackets around a set of indices indicate symmetrization and alternation respectively. 
The short-hand notation P(. . .} stands for the operation of projection used to obtain 
PU tensor fields, eg, 

in which P,, is the projection operator and gap is the normal hyperbolic metric of the 
minkowskian space-time M 4  (see I). 

Further, we define the following quantities : 

as well as the invariants in M 4  (see 11) 

that, in order to simplify the notation, we shall also refer to as C, M ,  and M. We recall 
that xpK (also denoted F )  is the direct gradient of the motion while XKa is the inverse 
gradient of the motion (cf I). The proper time derivatives of the invariants C, M ,  and 
M have been computed in I1 (equations (11-3.18)--(11-3.22)). On account of the 
expressions (2.2)-(2.4), and (2.8) and (2.9), they are : 

(2.12) 

By use of these expressions, an important transformation can be performed on the 

t We use here for a,, the sign chosen in 111 and not that used in 11. 
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equation (2.1). Indeed, if one introduces the following decompositions (suggested by the 
expressions (2.12)) for tPa and MPuP, 

t p a  = 2pFLxaKxfL+ pSL&xPL+ p,kL"~a,xPL, 
MO"" = ~ J # ~ ~ x [ ~ ~ ~ ~ ] x ~ ~ ,  (2.13) 
~ K L  = ~ L K  

in which f"" is a symmetric second order tensor, GL is an axial vector, and -kLK is a 
general second order tensor, respectively in [E;, then, introducing also the following 
invariants (vectors in [E:) : 

Q K  = p-*XtDQp, Q p  = pxfKQK, 

(2.14) 

gK = x7Kgg 7 = XrzgK, 
it is a simple matter of calculation to  show that the Clausius-Duhem inequality (2.1) can 
also be written in the following invariant form : 

(2.15) - (4 + r@+ 8- 'QK8,) + gKJK + f K L C , ,  + &LA?L + dL"&lL, 2 0 .  

We now define 

Etpz E 2pfKLx:K',xpL, E f a a  = Et%Ia = 0, (2.16) 

,@J = -& "L  9 ,@up = 0, (2.17) 

T a p  = pALKX:~X!,, T z p U ,  = 0, T a p U p  = 0 .  (2.18) 
Conversely. 

(2.19) 

(2.20) 

(2.21) 

I t  is clear that whenever there is no magnetization field, the equation (2.21) yields zero 
while equation (2.20) reduces to 

tSa = t"P Et@'P. (2.22) 

For this reason we call E t P Z  the pure elastic stress tensor. In the general case, the 
equation (2.20) gives : 

t(P') = E t P z  - p l @ f l . l a )  + TYPma)P, (2 .23~)  
tWP1 = - p p @ p ~ " '  + T ~ P " o l l P .  (2.23 b) 

O n  account of equations (2.23) and (2.2)-(2.3), it can be demonstrated after a some- 
what lengthy computation that the inequality (2.1) is also written as 

(2.24) 
1 

e e A( - p ( 4  + qd)  - - ~ P B ~  + gy j y +  tpaelp - p l g p ~ p  + s a f i ~ a P  
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(This can be shown by carrying the expressions (2.23) in equation (2.1). Then, for 
instance, using equation (2.7), we have 

Further, computing !$Id in a way similar to that followed in computing the variation of 
%NIB in Maugin (1973c), and using the spin equation (111-2.3), a long calculation that we 
do not give here leads to 

Comments. The interest for the decompositions (2.13) is threefold. Firstly, they 
allow us to  work with invariants in M4 instead of tensor-valued functions for the con- 
stitutive equations. This proves to  be more convenient. Secondly, the decomposition 
(2.20) which follows from the expressions (2.13) exhibits the different contributions to the 
relativistic stresses, ie, the pure elastic stresses, the contribution due to the local magnetic 
field (the latter represents the interactions between matter and magnetic spins), and the 
contribution due to the interactions between neighbouring magnetic spins through 
?,, . This will be shown later. Thirdly, it happens that equation (2.20) or (2.23) is formally 
the relativistic analogue to  an equation derived in the classical theory of magnetized 
deformable solids (Maugin and Eringen 1972b, equation (7.2) ; Maugin 1973e, equation 
(2.3 l)?). The physical interpretation of the elements of the decomposition obtained in 
the classical case confirms the interpretation mentioned above in the relativistic case. 
Also, a classical analogue to equation (2.24) has been obtained in the classical theory 
(Maugin and Eringen 1972a, equation (8.16)). Several further remarks are in order. The 
equation (2.23b) is similar to  the classical equation (1.12) of Maugin and Eringen (1972b). 
It is also a general case of an  equation (valid for all mechanical behaviours) which has 
been derived by the author (Maugin 1973c, equation (4.41)) for the special case of perfect 
spinning fluids whose constitutive equations were derivable from an internal energy 
density e(p, q, 2, ma,) when the latter must be Lorentz invariant. Finally, it is to be 
noted that, whereas the inequality (2.1) contains only Objective terms (ie, terms that 
satisfy the principle of material frame indifference in relativity (PMIR), see 9 3), the 
equivalent inequality (2.24) is expressed with some non-objective terms. Obviously, the 
invariant form (2.15) is entirely expressed by means of objective terms for the PMIR 
imposes an invariance only on tensor-valued functions in M4$. It follows that, if the 
PMXR is to be considered seriously as a requirement for the 'good' formulation of con- 
stitutive equations, and if one intends to  determine the response functionals-ie, the 
functional constitutive equations-which characterize the material and upon which the 
Clausius-Duhem inequality places restrictions, one must consider either the form (2.1) 
or the form (2.15) of this inequality. We shall consider the latter for it offers a much 
simpler formulation. 

t It is remarkable that the classical equation corresponding to equation (2.23) has necessarily and suflciently 
a decomposition of this type as a consequence of the simultaneous use of the principle of virtual work and the 
principle of objectivity (Maugin 1973e). 
1 In fact, in a previous paper (Maugin 1973f), we have demonstrated that the tensorial quantities e, ,  Cj ,  us#, 
v.,. and daav were objective whileLhe quantities w,# and 4, (considered separately), and the invariant deriva- 
tives of PU tensor fields such as Am and '%Rap were not objective. However, the proper time derivatives of the 
invariants are objective; hence c,,, h$L, and hL, are objective. 
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3. Simple magnetized thermodeformable media 

We recall that the motion of a material particle ( X K )  in space-time along its trajectory 
(WxK) is described by the diffeomorphism 

xu = Xt̂ "(XK, s), s E ( - a ,  a). (3.1) 

This represents the event point M(s) E (WxK). The X K ,  K = 1,2,3, refer to the reference 
state of this particle defined at  Po(s = 70) E (WXK). In the sequel, we are interested in 
constructing constitutive equations at  event point P(s = 5 > 70) E (WXK). If the motion 
(3.1) is known, then all tensor fields introduced in 8 2 can be expressed as functions ofthe 
independent variables X K  and s at any point M(s) E (WxK). Then, the ordered array? 

{ x'(s), tu%), MuBy(s)Jy(s), &,(s), &(s), W, rt(s), W, d%), h(s)J (3.2) 

in which the dependence upon X K  is understood but is not explicitly indicated, will be 
referred to as a simple admissible thermodynamic process i f :  

(i) it is compatible with the basic conservation laws; 
(ii) it processes a finite non-negative temperature 8 such that 8 E (0, CO) and 

inf 8 = 0 (we disregard systems which interact with electromagnetic fields and exhibit 
negative temperature) ; 

(iii) it satisfies the Clausius-Duhem inequality (2.1). 
I t  is clear that if xu(s) and &(s) are known, then x:~(s), XK,(s), p(s), W K ( s ) ,  and 

'%JlU~(s) are known and that, on account of the equations (2.13) and (2.14), the following 
ordered array: 

{~"(s) ,  f K L ( s ) ,  GK(s), -dLK(s), JK(s) ,  gK(s), J@(s), $4~1, rt(s), QS), h(s)}  (3.3) 

is a simple admissible thermodynamic process equivalent to (3.2), the inequality (2.1) 
being replaced by its invariant form (2.15). 

However, we do not know the relations that link the dependent variables f K L ( s ) ,  
bK(s), -dLK(s), JK(s ) ,  I&), ~ ( s )  and QK(s) ,  to those remaining variables ofthe set (3.3) which 
are considered as independent variables, ie, xu(s), gK(s), &(s) and @s). Establishing these 
relations is the purpose of constitutive theory. Special classes of constitutive equations 
have been considered in foregoing parts of this work. Here we shall consider a larger 
class of constitutive equations, in other words, a larger class of materials, the simpler 
ones (eg, nonlinear elastic solids) being included as special cases. We have the 

Definition. In agreement with the principle of determinism and the axiom of equi- 
presence (cf Eringen 1967, chap 5 ) ,  we call relativistic simple magnetized thermo- 
deformable materials those materials for which the dependent variables, ie f K L ,  bK, 
dLK, JK, $, q and QK with values at  event point p(s  = 7) E (WXK) are entirely determined 
by all values taken by the independent variables xu(s), gh(s), &(s) and 8(s) and, eventually, 
the ad hoc (first order) gradients of the latter, at  all past (with respect to P(s = 7)) event 
points M(s < 7) along (WXK)) and the values taken by the same variables at P(s = 7) 
itself. 

t h is the specific heat source (cf I and 11); it is assumed to be given. Each symbol used in the enumeration (3.2) 
in fact stands for the set of distinct components of the corresponding tensorial quantity. The same convention 
holds true in the subsequent development as, for instance, in the list of independent variables present in 
equation (3.4). 
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Thus, considering the free energy I) as a typical dependent variable, we may consider 
the following type of constitutive equations : 

withs E ( -  C O , ~ ] .  Indeed,x~Kisthefirst$radientofthemotionx";fm~,isthefirst relativistic 
gradient o f d '  (cf equations (2.8)), and 8, is the ad hoc quantity that represents the notion 
of relativistic gradient of the temperature 0 (cf equation (2.6)). We do  not consider the 
gradient of gm although this would not yield any difficulty. An explicit dependence upon 
X K  is not exhibited but this, too, would not change anything in the following derivation 
and would not alter the results deduced. x'(s) cannot appear as an independent variable 
in equation (3.4) for I), and all other dependent variables considered here, are Lorentz 
invariants in M4. The requirement that I) be invariant under space-time translations 
rules out a possible dependence upon xu.  

The expression (3.4) represents afunctional. For instance, we may think ofa functional 
as an integral of functions of the different arguments X?~(S) ,  ~#"(s), etc, over the proper 
time interval ( -  CO, T ]  along (WxK). The result is a function (a scalar-valued function in 
the case of I)) with value at P(s = 7). Note that the arguments are tensor-valued functions 
in M4 expressed in a local curvilinear chart xu  (cf I ) ;  the summation of the values taken 
by a tensor field at different event points M(s) E (WxK)  involves some difficulties if a 
different chart is used at each event point M(s).  The difficulty is resolved if one imposes 
that the constitutive equations of the type (3.4) satisfy the so-called principle of material 
frame indiference in relativity (PMIR) as enunciated by the author (Maugin 1972c, d, 
1973f). In a non-mathematical form, this principle can be stated as : 

P M I  R (Maugin 1973f) : Constitutive equations of an ideal relativistic continuous de- 
formable medium must be objective; that is, they must be invariant with.respect to 
superposition of an arbitrary local Herglotz-Born rigid body motion. 

A local Herglotz-Born rigid body motion is such that 0 (s) = 0 (for all s along VXK)  
in an open neighbourhood F(gXK) of ( ( g X K ) .  The mathematical form of the PMIR and its 
application to different classes of constitutive equations are given in Maugin (1973f). A 
necessary and sufJicient condition that constitutive equations ofthe type (3.4) be objective 
(or satisfy the PMIR) is that they be of the following form$ : 

4 ,  

with s E ( -  o o , ~ ] .  Here C, M, and M are the invariants (tensor-valued functions in the 
reference state defined at  P,(s = 7 0 )  E WxK) defined in equations (2.10) and (2.1 1). G and 
E are short hand notations for the set of components of e K  and gK respectively (cf 
equations (2.14)), ie, C(s) = {e&)}, E(s) = {~?~(s)}. Now we see that the process of 
summation indicated above as an example of functional form can be carried out without 
difficulty for all arguments appearing in equation (3.5) may be considered as tensor- 
valued functions in [E; at the unique point P,(s = 70 < 7) although they still depend on 
the parameter s which can take all values in the real interval ( -  CO, T ] .  

t This form replaces that given in 11, 5 3.2 under the title of objectivity. Both forms yield identical results 
(cf Maugin 1973f). 

The proof which is not trivial is given in Maugin (19731) for 1(1 = Y[xuK(s), &), Bs(s)]. I t  is readily extended 
to the form (3.4) and will not be repeated here. 
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It is clear that if one introduces the new time-like variable ( = 7 - s, 5 E [0, CO), then 
one can also write 

5 E [0, CO). in which, for instance, the total history of C is defined as 

cy() = C(r - 5 )  = C(s). (3.7) 

Similarly general constitutive equations hold for the other dependent variables F K L ,  
&K J L K  J K  , q  and Q". We say that the functional equations of the type (3.6) represent 
the constitutive equations of a relativistic simple homogeneous magnetized thermode- 
formable medium. As we shall see below, such a medium in general is dissipative. 

. 

4. Consequences of the second principle of thermodynamics 

4.1. Functional frame 

(i) The next step in the present study consists in giving the expressions of the restrictions 
placed upon the constitutive functionals Y, etc, by the Clausius-Duhem inequality. 
The answer depends on the nature of the domain and the assumed smoothness of these 
functionals. We here follow the notions of nonlinear functional analysis given in Rall 
(1971)t. I t  is convenient to introduce the following notational device. We define the 
ordered quadruple r and the pair A by 

r = {c, M, M, e } ,  A = { G , E } .  (4.1) 

Given the different symmetry properties in E; of the arguments listed in these expressions, 
r and A can be regarded as elements in y19) = 7/;6) 0 y 3 )  0 y 9 )  0 y l ) ,  and 
y 6 )  = y 3 )  0 y3) respectively, where is a real vector space of dimension m. Thus 
A = {r(s), A(s); s fixed} is an element of V,z5,. For a given value of the variable s or (, 
the natural norm on y 2 5 )  is (Tr = trace, T = transpose) 

IIIAIIIv~25~ = (A . A)'/' = [Tr Cz + M .  M+Tr(MM")+ O2 + G .  G + E .  (4.2) 

The symbol 0 will denote the zero element in any ym). The elements A which can occur 
in an admissible process form a set %? that we assume to be a cone in V,,,,. B denotes the 
Banach space formed from functions mapping [0, CO) into y 2 5 ) .  The set of elements of 
B corresponding to functions with range in %? forms a cone C in B. 6 is the domain of 
definition of the functionals Y ,  etc. 

(ii) Let f be an element in B corresponding to a real vector space Ym,. Following 
Coleman and Mizel (1967, 1968a, b) and Coleman and Dill (1971) to  whom we refer, 
we may introduce an influence measure p and consider the Banach function space B 
such that, i f f  E B, then J l f l J B ( p )  < CO,  where 1 1  . . . l I B ( p )  is the norm relative to the measure 
&. f : ( ( )  being the restriction of f'(+the latter is defined as in equation (3 .7Fon  
30, x), f: is in a cone E, in B,, the latter being the Banach space of functions f :((), 

t However, all special notations are defined in the text. 
$ Following Coleman (1964), we could introduce an injuence function h(c)(a positive monotonically decreasing 
fixed function such that c 2 h ( c )  is integrable on [0, so)), thus giving a structure of Hilbert space to the space of 
functions 1: The approach considered here is more general. 
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5 ~ ( 0 ,  a) such that l l f r l l r  = ( ( f ~ ( ~ , ~ ) / ( ,  where c ( ~ , ~ )  is the characteristic function on 
(0, a). Then the norm of 1' in B is 

I I f I IB = IIf':IIr+ltlf(S = O)lll, 

and B = y,,,) 0 B,  in both algebraic and topological senses. Then it is further supposed 
that: 

(i) f i s  differentiable in the classical sense at 4 = 0; 
(ii) f; is an absolutely continuous function on (0, C O ) ;  

(iii) the constant history? f" on [0, CO) whose value is 

f+(8  = . f ' (OL 5 E [O, a), 
is in 45 ; 

(iv) the following time derivative is also in 45 : 

Furthermore, for any f in 45 c B, 
history f' up to time s = T by 

f35) = f'(8 -f" 
and 

(4.3) 

we define the difference history f and the integrated 

(4.4) = f ( T  - t) - f ( T L  

(4.5) 

respectively. Then, if a superposed dot here means the left-hand derivative of f(s)  at 
s = ?-which is the same as the right-hand derivative off'(() at ( = 0 up to  a sign-ie, 

we have 

and 

(4.7) 

With the hypotheses made above concerningf E 45, we suppose that a typical functional: 
I) = "[f] is continuously Frichet differentiable on 6 for each f E a and every g E B with 
f+ g E 45. The total Frechet derivative at f is noted 6Y[f;  g]. It is  a linear functional 
defined and continuous on 6 x 8 (8 is the subspace of B spanned by 45); it is a h e a r  
functional of g for each f. In particular, according to  the chain rule for the 'theory of 
fading memory' (see Coleman and Dill 1971), the time derivative of I,!I defined as in 

t l ' (5 )  and O'(5) are the constant unit and zero histories, the values of which are respectively one and zero on 
[O, CO). 

1 The notation used for functionals is the followmg: Y[A ; BIA ; C] means that Y is a generalfuncrional of A on 
(0. 5) and a classicdfunction of A ( 5  = 0); it is a linearfunctional of B on [0, CO) and a linearfunction of C(5 E 0). 
" [ A  ; SI represents a general functional of A on [0, CO) and a linear functional of B on [O. a). 
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equation (4.6) is related to  the total Frechet derivative of Y by the simple relation 

$ = 6 W ; f l .  (4.9) 

Depending on the form assumed for Y ,  we have the following results useful in the 
sequel : 

Lemma I .  I f  + ( T )  = Y[f:(()If'(O)], then 

(4.10) 

(4.1 1)  

Here afY is the partial derivative of Y considered as a classical function of the inde- 
pendent variable f'(0) 3 f ( ~ ) .  V,Y is the ,functional gradient of Y which is defined by 

(4.12) Vf'Y[f:lS'(0)1 = h W f : , ;  1 +(5)lf7(O)1. 
DfY is called the instantaneous derivative of Y (with fixed past history). 

(4.14) 

The proof of lemma 1 is immediate for, on account of equation (4.9), we have 

. j ( T ) .  

On account of its linearity with respect to its second argument, the term 6Y is trans- 
formed with the aid of equation (4.7) and the definition (4.12). 

The proof of lemma 2 goes as follows. Using (4.9), we have 

(4.15) 

Taking account of the first of equations (4.8), the definition off:((), and the definition 
(4.14), we successively have 

= sy[f'; -f;(t)lf'(o)] = 6 ~ [ f 7 ; f ' ( t ) l f ' ( 0 ) 1  + Vfy[f'lf'(o)l . f (T) .  (4.16) 

Replacing f " ( 5 )  by its value given by the second of equations (4.8), and carrying the 
resulting expression (4.16) into (4.15), we obtain (4.13). 

4.2. Constitutive equations 

Using the definitions of the preceding section, we can define from the arrays considered 
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in equation (4.1) the functions lY(), 5 E [0, F), rA(5), 5 E [0, x) and E(l),  (E  [0, x) with 

We set 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Obviously, the knowledge of r:({), 5 E [0, CO) and r'(0) is equivalent to that of the 
total history rT(5), < E [0, x). Similarly, the knowledge of A'(<), < E [0, CO) and A'(0) is 
equivalent to that of Ar(5), 5 E [0, CO). 

Further, the following ordered array 

x = { f K L  3 ,  &K A L K  , - V ,  -QK/e ,  J K J  (4.21) 

represents the set of dependent variables. Clearly C has values in V,,,, (better, in V & , ) ,  
the dual of V&J. Then, on account of the definitions introduced above, the whole set of 
constitutive equations (3.5) can be written as 

(4.22) 

Also introducing the ordered array 

Q ( 4  = {fb), A(T)t, (4.23) 

the inequality (2.15) is written in the following shorthand notation: 

- $ + x . n  2 0. (4.23) 

is the functional given in equations (4.10), we 
must specify the topological frame. We suppose that the topological properties assumed 
in B are those described in 9 4.1(ii), but adapted to  the particular case corresponding to 
the original norm (4.2) of Y z 5 , .  Then Y is Frechet differentiable with respect to its 
argument A:(() according to  the definition (4.9) and the results (4.10) through (4.18). $ is 
also assumed to be continuously differentiable (in the classical function sense) with 
respect to  A'(0) = A(T).  It is to  be remarked that the continuity and differentiability 
conditions assumed physically correspond to  the material having a so-called fading 
memory (cf Coleman 1964) in the sense that values taken by the arguments of the 
functionals (4.22) at distant past event points M(s << T )  E (WxK)  do not influence much the 
behaviour of the material at event point P(s = z) E ( W x K )  or, in other words, the values 
of the dependent variables rl/ and Z at this point. 

Taking account of the definitions (4. l), (4.4) and ( 4 3 ,  and using the lemmas established 
above, we can write the proper time derivative of rl/ at the event point P(s = T )  E (gXK) as 

In order to  compute $, and since 

$ ( T )  = 0". Q+dGY. G+d,Y. k-8Y 
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Here OY denotes, in i&,, the array 

0'4' = {DcY, DMY, D,.,,'€', D@Y, VcY, VBY}. (4.25) 

The symbols d, D, V and 6 have been defined in 0 4.1. 

it can be written in the form 
The Clausius-Duhem inequality (2.15) or (4.23) being considered at P(s = 7) E (VxK), 

A straightforward argument which closely parallels that given in Coleman (1964) 
and McCarthy (1970a) may be used to  show that the inequality (4.26) is satisfied for all 
admissible histories R and all admissible rates G and E if and only if 

ZGY = 0, 

c = OY. 

(?€Y = 0, (4.27) 

(4.28) 

The equations (4.27) mean that, in this theory, Y cannot depend explicitly on the present 
values C(7) and E(7) of the temperature gradient and the electric field so that, on account 
of the notation introduced above, Y reduces to the functional form 

On  account of the definitions (4.21) and (4.251, the equation (4.28) represents the following 
set of component equations: 

f"" = DcK,Y, 8" = DMKY, iLK = DMLKY, 

= -Do", (4.30) 

Q K  = - e v G K ~ ' ,  .IK = V&Y. 

On account of the results (4.27) through (4.29), the inequality (4.26) is reduced to 

where r is the quadruple defined in equations (4.1). Introducing with an obvious 
notation the partial Frechet derivatives? and taking account of equations (4.19), (4.1) 
and (4.8), we can write this inequality in the developed form : 

This is the generat dissipation inequality. The left-hand side defines the dissi,pafion per 
unit of proper mass. 

?The total Frecket derivative is the sum of the partial Frechet derivatives (cf Rall 1971). 
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Finally, carrying the results (4.30) into the relations (2.13) and (2.14), we obtain the 
following constitutive equations at event point P(s = T )  E (VXK) : 

Then we can gather the results of our investigation in the following statement: 

Theorem. I f  follows from the second principle of thermodynamics and the assumptions 
made with regard to  the continuity and the differentiability of the functionals involved 
that the constitutive equations representing the behaviour of an ideal relativistic 
electric conductor magnetized thermodeformable medium which obeys the principle of 
fading memory are given by equations (4.33) through (4.37), respectively for the rela- 
tivistic stress, the relativistic couple stress, the specific entropy, the heat flux, and the 
conduction current, if the specific free energy assumes the general functional form (4.29) 
which must satisfy the inequality (4.32). 

I t  is also useful to  remark that, on account of equations (4.30) and (2.17)-(2.18), the 
and the spin interaction tensor constitutive equations of the local magnetic field 

T@ are given by 

(4.38) 

(4.39) 

5. Steady-state processes 

Before examining the limiting case of steady-state processes, we perform a transforma- 
tion on the inequality (4.32). Consider the second term of this inequality. Noting that 
it is a linear functional with respect to  its argument G(5) and that the latter can be 
written as (cf equation (4.4)) 

G‘(0 = Gi(5) + G‘(O), 
we have 

On account of the definition of the functional gradient, the last term is none other than 

The last equality follows from equation (4.30, part five). The third term in the left-hand 
side of equation (4.32) can be transformed in the same manner. Collecting these results, 
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we can write this inequality in the following form : 

1 
- - Q ( T ) .  G ( r ) + J ( r ) .  E(T) 2 0. e (5.1) 

At this point it is important to  remark that the first term is a linear functional in 
(d/d()r'(() while the second and third terms are linear functionals in O,({) and Ed(<) 
respectively. 

We now give a mathematical definition of a steady-state process. Let f be one of the 
functions considered in 3 4.1. The static or steady-state continuation off by an amount 6 
is the function E@lf for which-see Coleman and Dill ( 1 9 7 1 H 6  2 0) 

Elementary properties of E'"f are 

lim ~ " l f  = f+(t) ,  
6 - z  

where f '(5) is the constant history defined in 44.1. The application of the limiting 
process indicated in the last equation to  the different arguments that appear in the 
functionals considered above yields 

We see that the limit of the steady-state continuation leads to the value of the different 
functions at P(s = T) E (VXK). 

We may define the equilibrium response functions \fi, fKL, .  . . , OK, and j K ,  by 
(cf Coleman 1964) 

'f-'[r, A1 = W + ( O ,  A'(5)1, etc. ( 5 . 5 )  

Since Y and the other constitutive functionals are assumed to be continuous functions 
on (5, it follows that 

lim Y[E@)T, E@lA] = @[r'(O), A'(O)], etc. 
6- CO 

Thus, for a steady-state continuation carried along the whole trajectory (gXK) up to 
the event point P(s = T F ~  is taken to go to  infinity-the specific free energy functional 
reduces to  a classical function of arguments with values at P(s = 5) .  Moreover, the 
result (4.27) being still true, Y cannot depend on Ar(0). Hence, on account of the first 



Relativistic magnetoelastic interactions IV 833 

of equations (4.1), the specific free energy for steady-state processes is of the form: 

$ ( T )  = $*(c(T), M(T), Mb), e ( T ) ) .  (5.7) 

Since $ is no longer a functional, the instantaneous derivatives reduce to partial 
derivatives in the classical sense (cf equation (4.11)). It follows that the functional 
constitutive equations (4.33) through (4.35) reduce to 

(5.9) 

(5.10) 

The case of the heat flux and the conduction current is somewhat different. First, it 
is to be noted that the first term in the left-hand side of equation (5.1) vanishes for 
steady-state processes because Y is no longer a functional of P(<). The second and 
third terms vanish automatically for they are linear in Ci(() and Ei(4;) respectively, and 
the latter quantities vanish according to the equation (5.4). Hence, for steady-state 
processes, the dissipation inequality reduces to 

1 .  
8 

- - Q ( T ) .  C(T)+j(T). E(T) 2 0 (5.1 1) 

or, equivalently, in invariant and covariant component forms, 

(5.12) 

Here Q and j (and  andjp) are the steady-state values of the heat flux and the conduction 
current. According to the general formulae (4.30, parts five and six), these can be formally 
defined as 

Q = -8 lim{Vay[Qt), &m-(o ) i~  
9 = l ~ " W ( 0 ,  m)Ir(o)lL 

(5.13) 

where the limit symbol stands for the limiting process defined in equation (5.3) but 
applied to C'(() and E'(t), ie,G'(() H C+(<) = C(T) and E'(<) H E'(() = E(?). We remark 
that the corresponding limits of o(() and ~!?(t) involve C(T) and E(T).  Hence we can 
write the expressions (5.13) as the following functions (no longer derivable from $ at the 
limit ; cf equation (5.7)): 
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wherein stands for the quadruple defined in equation (4.1). These equations are 
compatible with the general form stated in equation (5.5). However, in contrast with $*, 
hence with tSa, MBao and U, 0 and 4 still depend on G(T) and E(r). 

Employing an argument used by Coleman and No11 (1961), one may easily show 
that, if the function defined in equation (5.14) is differentiable with respect to G a t  C = 0 
with E = 0, the inequality (5.1 1) implies the following result by continuity: 

Q ( r ( T ) , O , O )  = 0. (5.16) 

Similarly, if the expression (5.15) is differentiable with respect to E at E = 0 with C = 0, 
then the same inequality implies that 

J(r (T) ,  0,o) = 0. (5.17) 

That is, in agreement with the last equation, if the material does not conduct electricity, 
then the equation (5.16) holds, ie, heat does not flow in a steady-state characterized by r 
unless the temperature gradient is not zero. More generally, neither heat nor current 
flows in a steady state in which both the electric field and the temperature gradient are 
zero. If E and G are different from zero, then the fact that Q and in general depend on 
E and C respectively accounts for the Thomson and Peltier effects. 

Finally, the steady-state values of the local magnetic field and the spin interaction 
tensor rap whose functional forms are given by equations (4.38) and (4.39) obviously are 

Also, the pure ‘elastic’ stress EtPa defined in equations (2.16) is 

(5.18) 

(5.19) 

(5.20) 

6. Comments 

6.1. Hereditary processes 

The functional constitutive equations derived in Q 4 allow us to represent hereditary 
processes for the mechanical stress tSa and the magnetic effects proper to the theory of 
magnetoelastic interactions (ie, the existence of a local magnetic field and that of inter- 
actions between neighbouring spins via the couple stress tensor MBap or the tensor ?@), 

but also for the heat flux and the conduction current. The results-equations (4.33) 
through (4.37)-are quite general since no specific form is given for the free energy 
functional Y .  Simple specific forms are not studied here because of the lack of space but 
also, because this study would duplicate some other works. For instance, a peculiar 
study of the constitutive functional (4.30, part one) along the lines of Coleman and No11 
(1961) would show that a particular case of this equation may serve to describe visco- 
eIastic solids of the Volterra type (compare with equations (111-4.24) that represented 



Relativistic magnetoelastic interactions IV 835 

a viscoelastic material of the Kelvin-Voigt type). The same procedure applied to the 
second and third of equations (4.30) would probably yield rich rewards. However, the 
most interesting point for relativistic physics is provided by the constitutive equation 
(4.36) for the heat flux. This functional constitutive equation can be written in the form 

Here we have introduced O(s) and p(s)  in the functional 0" for O(r) is already present in 
the array A'(0) and p ( s )  can be written as (cf Maugin 19738) 

P(T)  = pR(detICKL(s)I)- l'' 

where pR is a constant which defines the matter density in the reference configuration 
described at P,(s = r0) E (VXK). Thus, apart from the constant pR which is unimportant, 
p(s)  is a function of C K L ( T ) .  The latter is already included in the array A'(0); hence the 
functional form (6.1). In another paper (Maugin 1974), by using the principle of fading 
memory, we have derived a special case of the equation (6.1), specifically : 

in which G K L  is the reciprocal metric in E; and k and x are positive scalars. The consti- 
tutive equation (6.2) which clearly represents a hereditary process holds in isotropic 
media (whereas no symmetry condition is applied in the present paper). In establishing 
this equation, we have neglected the interactions between the different transport 
phenomena (for instance, the interactions between viscosity and heat flow). The 
remarkable fact is that the integral representation (6.2) is the solution of the following 
differential equation: 

&+ k;EQP = - x d p  (6.3) 
U 

where f, indicates the Lie derivative with respect to  the four velocity field U=. This is 
nothing but the constitutive equation? for heat flux postulated by Kranys (1966a, b) with 
the difference that fugP replaces the term d p  used by Kranys. I t  follows that the equation 
(6.3) is objectioe (ie, it satisfies the PMIR) whereas Kranys' equation is not objective (see 
the proof in Maugin 1973f). Recent studies of the relativistic Cauchy problem (see, 
for instance, Mahjoub 1971) have shown that expressions of the type (6.3) can resolve 
the paradox of the propagation of thermal disturbances at infinite velocity. The 
general case (6.1) thus contains a possible solution to this paradox and the point raised 
at the end of the previous article of this series (Maugin 1973b) is answered. It is to  be 
pointed out that Gurtin and Pipkin (1968) have provided the same answer to this 
paradox in classical physics by studying the heat flux in rigid solids with a constitutive 
equation similar to  equation (4.19, part five). 

6.2. Steady-state processes 

The constitutive equations (5.8) through (5.10) are none other than the constitutve 
equations for nonlinear elastic solids obtained in I1 (compare with equations (II-3.40t 
(11-3.42). Also, the equations (5.18) and (5.19) are the constitutive equations (11-5.6) and 
7 Note that, from our viewpoint, the constitutive equation is the integral expression (6.2) and not the equation 
(6.3). 
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(11-5.2, part two)t. When the matter does not interact with any electromagnetic fields 
(non-magnetized media), then the only relevant constitutive equation is that of the pure 
‘elastic’ stress EtPa  given by equation (5.20). This equation was given before by Grot and 
Eringen (1966). It follows that the general case of simple thermodeformable materials 
obeying the principle of fading memory contains as a limiting case (obtained by the 
process of steady-state continuation described above), that of nonlinear magnetized 
elastic materials. Further, the heat flux vector corresponding to steady-state processes 
is only a function of the temperature gradient (cf equation (5.14)) and not a functional. 
A linear approximation of Q with respect to C(T)  in equation (5.14) would provide a heat 
flux constitutive equation with a form similar to that obtained in 111 (equation (111-4.26)) 
by using different arguments. Such a form would not resolve the paradox referred to 
above. Thus we are led to a remark quite similar to that made by Kranys (1966b): a 
heat flux hereditary process1 is necessary to solve the paradox ; according to the general 
presentation given in this paper, in this case, all phenomena (stresses, local magnetic 
field, conduction current,. . .) present simultaneously a hereditary process. This may 
be worded in another fashion : the hereditary processes considered in this paper ob- 
viously lead to transport phenomena ; all transport phenomena arise simultaneously 
and in general interact as the functional dependence of each independent variable on 
the whole set of dependent variables shows. 
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